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The organolithium species addition to 2-hydroxymethyl fluorinated oxazolidines (Fox) provides a highly diastereoselective and straightforward
route for the synthesis of enantiopure trifluoromethyl 5-amino alcohols quaternarized at the 3-position.

Enantiopure 3-amino alcohols are very interesting com-
pounds for biological use' and for the design of chiral
ligands or auxiliaries.” Because of the great impact of the
incorporation of a trifluoromethyl group on the chemical
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and the biological properties of molecules,’ B-trifluoromethyl
f-amino alcohols are very attractive compounds mainly as
biologically active compounds such as peptidomimetic units.*
Although several methodologies have been reported for the
asymmetric synthesis of -trifluoromethyl S-amino alcohols
monosubstituted in the S-position,” to our knowledge very
few reports exist on the synthesis of their analogues quater-
narized at the S-position.® The limitations of these methods
are their low diastereoselectivity®" or the numerous steps
required to obtain the enantiopure target compound.®

In order to provide a straight forward and highly
stereoselective access to these challenging quaternarized
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B-trifluoromethyl S-amino alcohols, we decided to investigate
the addition reactions of organometallic species to a chiral
2-trifluoromethyl-2-hydroxymethyl-1,3-oxazolidine. The ad-
dition of organometallics to unfunctionalized chiral trifluoro-
methyloxazolidines (Fox) has been reported to provide
a convenient access to chiral a-trifluoromethylamines.” '
However the stereoselectivity of the organolithium reagent
addition to (R)-phenylglycinol based fluorinated oxazolidines
was reported to proceed with retention of configuration.® As a
consequence, this strategy requires a tedious separation of the
starting oxazolidine diastereomers before the reaction with
the organometallics (Scheme 1). Other procedures involve the
stereoselective addition of organolithium reagents on a hy-
droxylated imine which is difficult to isolate or on silylated
imine intermediates (Scheme 1).%

Scheme 1. Stereoselective Synthesis of Chiral Trifluoromethylated
Amines from Trifluoromethylated Oxazolidines and Imines
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We recently reported that the LAH reduction of
(R)-phenylglycinol and ethyl trifluoropyruvate based oxazo-
lidines provided a straightforward access to enantiopure
(S)- and (R)-trifluoroalaninols (Scheme 2).%*

Scheme 2. LAH Reduction of Chiral Ethyl Trifluoropyruvate-
Based CF;-Oxazolidines Leading to Enantiopure (S)- and
(R)-Trifluoroalaninols”
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In order to extend this approach to the synthesis of
chiral g-trifluoromethyl 3-amino alcohols quaternarized at
the S-position, we report herein the stereoselective addition
of various organolithium compounds to fluorinated
2-hydroxymethyl oxazolidines 2. The oxazolidines 2 were
conveniently obtained as a 71:29 diastereomeric mixture
through the chemoselective NaBH, reduction of the tri-
fluoropyruvate-based oxazolidine 1 (Scheme 3)."° Each
diastereomer of oxazolidines 2 could be easily isolated by
silica gel chromatography'? or by precipitation of the major
diastereomer in pentane.

Scheme 3. NaBH, Reduction of the Chiral Ethyl Trifluoropyru-
vate-Based CF3-Oxazolidine 1¢
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Table 1. Diastereoselective Organolithium Reagents Addition
to 2-Hydroxymethyloxazolidines 2

Ph, Ph
/‘ \ A-OH
HN><O/OH RLi (4 equiv) HN
F.C T Reseor
2 3-8

entry oxazolidine R de (%)° product yield (%)
1 2iuai Me >98 R)-3 93
2 2in Me 90 R)-3 80
3 2 Me >98 (R)-3 74
4 2 a nBu >98 (R)-4 77
54 2 Ph >98 (R)-5 67
6° 2 ma =TMS >98 (R)-6 59
7 2pnin =—TMS >98 (R)-6 77
8 2 ua iBu 82 (R)-7 66
9 2min iBu 66 R)-7 73
10 2 iBu 76 R)-7 66
11 2 CH,SPh 76 (R)-8 54

“Measured by "H and '°F NMR spectroscopy analysis of the crude
reaction mixture. >98% means that one single diastercomer was de-
tected. * Yields of pure isolated compounds. “71:29 mixture of 2maj/2min-
“Reaction performed at —40 °C. “Reaction performed at —20 °C.
/'88:12 mixture of 2majl 2min

The major diastereomer 2,,,; was treated with an excess
amount of methyllithium (4 equiv) at —78 °C in THF to
give the amino diol (R)-3 in 93% yield with complete
diastereoselectivity (Table 1, entry 1). Intriguingly the
addition of methyllithium to the minor diastereomer 2y,
gave the same amino diol (R)-3 in 80% yield and 90% de
(Table 1, entry 2). These results strongly contrast with the
organolithium reagent additions on diastereomerically
pure (S) or (R) non-hydroxylated oxazolines giving differ-
ent diastereoisomers (Scheme 1).® This result suggests that
the same transition state should be involved in the methyl-
lithium addition reaction on both oxazolidines diasterco-
METS 2pm,j and 2min. This was confirmed by the fact that the
addition of methyllithium to a 71:29 diastereomeric mixture
of oxazolidines 2 also gave the unique (R)-3 diastereomer
with an excellent diastercoselectivity (Table 1, entry 3).
The addition of n-butyllithium and phenyllithium to
2maj occurred also with complete diastereoselectivity
(>98% de) to give (R)-4 and (R)-51in 77% and 67% yields
respectively (Table 1, entries 4 and 5). The addition of
lithium trimethylsilyl acetylide to isolated oxazolidines 2pma;
and 2,;, was also completely diastereoselective (> 98 % de)
giving the same (R)-6 aminodiol in 59% and 77% yields
respectively (Table 1, entries 6 and 7). The addition of
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iso-butyllithium and phenylthiomethyllithium to 2,,,; and
2min proceeded with lower diastereoselectivity (66% to 82%
de) although the yields of diastereomerically pure com-
pounds were acceptable after silica gel purification (54%
to 73%) (Table 1, entries 8—11). As a preliminary study, the
addition of a Grignard reagent (EtMgBr) was investigated
but the expected addition product was obtained in a low
yield (28%) and an average diastereoselectivity (74% de).

Scheme 4. Removal of the Phenylethanol Side Chain of (R)-3,
(R)-4, and (R)-5
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In order to obtain the enantiopure targeted amino
alcohols, the phenylethanol side chains of (R)-3, (R)-4,
and (R)-5 were cleanly removed by hydrogenolysis. The
enantiopure fluorinated amino alcohol hydrochlorides
(R)-9, (R)-10, and (R)-11 were then obtained in 94%,
89%, and 99% yields respectively (Scheme 4).

Scheme 5. Structure Correlation for the Assignment of (R)-3
Absolute Configuration
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The (R) configuration of the amino alcohols obtained
was assigned by structure correlation with known com-
pounds. We previously reported that the enantiopure
(R)-trifluoromethylalanine was efficiently obtained in a
few steps from the (R)-amino nitrile (R)-12 (Scheme 5).%*
Thus the amino nitrile (R)-12 and its corresponding dia-
mino alcohol (R)-13 were resynthesized according to our
reported procedure®® and (R)-13 was converted into the
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Figure 1. Postulated transition state: si-face attack of a chelated
Z metallo-imine.

corresponding diastereomerically pure amino diol (R)-3
through a diazotization reaction (Scheme 5). The optical
rotation and the spectral data of this compound perfectly
matched the compound (R)-3 synthesized in this work
(Table 1, entry 1). Because of similar postulated reaction
mechanisms the configurations of compounds 4 to 8 were
also anticipated to be (R).

In order to explain these results we suggest that the
reaction proceeds through the same Z-metallo-imine re-
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sulting from the organometallic mediated ring opening of
the hydroxymethyloxazolidines 2p,; and 2. To rational-
ize the diastereoselectivity of this reaction we propose a
transition state inspired by both Iwao’s model'® based on
the N,0 (phenylglycinol) metal chelation and Spero’s
model'® involving a N,0 (oxymethyl) chelation. The N,
0,0-tridentate chelation model we propose is consistent
with an si-face attack of the chelated Z metallo-imine by a
dimeric organolithium compound (Figure 1).

In summary, the organolithium species addition on
chiral hydroxymethyl trifluoromethyl oxazolidines is highly
diastereoselective. This provides a convenient and straight-
forward access to enantiopure S-trifluoromethyl f-amino
alcohols quaternarized at the S-position.
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