Highly Diastereoselective Synthesis of Enantiopure β -Trifluoromethyl β -Amino Alcohols from Chiral Trifluoromethyl Oxazolidines (Fox)

LETTERS 2012 Vol. 14, No. 2 604–607

ORGANIC

Julien Simon, Evelyne Chelain,* and Thierry Brigaud*

Laboratoire "Synthèse Organique Sélective et Chimie bioOrganique" (SOSCO), Université de Cergy-Pontoise, 5 Mail Gay-Lussac 95000 Cergy-Pontoise cedex, France

thierry.brigaud@u-cergy.fr; evelyne.chelain@u-cergy.fr

Received December 2, 2011

The organolithium species addition to 2-hydroxymethyl fluorinated oxazolidines (Fox) provides a highly diastereoselective and straightforward route for the synthesis of enantiopure trifluoromethyl β -amino alcohols quaternarized at the β -position.

Enantiopure β -amino alcohols are very interesting compounds for biological use¹ and for the design of chiral ligands or auxiliaries.² Because of the great impact of the incorporation of a trifluoromethyl group on the chemical and the biological properties of molecules,³ β -trifluoromethyl β -amino alcohols are very attractive compounds mainly as biologically active compounds such as peptidomimetic units.⁴ Although several methodologies have been reported for the asymmetric synthesis of β -trifluoromethyl β -amino alcohols monosubstituted in the β -position,⁵ to our knowledge very few reports exist on the synthesis of their analogues quaternarized at the β -position.⁶ The limitations of these methods are their low diastereoselectivity^{6a,b} or the numerous steps required to obtain the enantiopure target compound.^{6c}

In order to provide a straight forward and highly stereoselective access to these challenging quaternarized

 ^{(1) (}a) Bergmeier, S. C. *Tetrahedron* 2000, *56*, 2561–2576. (b) Klingler,
 F. D. *Acc. Chem. Res.* 2007, *40*, 1367–1376. (c) Lee, H.-S.; Kang, S. H. *Synlett* 2004, 1673–1685.

^{(2) (}a) Fache, F.; Schulz, E.; Tommasino, M. L.; Lemaire, M. Chem. Rev. 2000, 100, 2159–2231. (b) Senanayake, C. H. Aldrichimica Acta 1998, 31, 3–15. (c) Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835–875. (d) McManus, H. A.; Guiry, P. J. Chem. Rev. 2004, 104, 4151–4202. (e) Ghosh, A. K.; Mathivanan, P.; Cappiello, J. Tetrahedron: Asymmetry 1998, 9, 1–45. (f) Rechavi, D.; Lemaire, M. Chem. Rev. 2002, 102, 3467–3494. (g) de Parrodi, C. A.; Juaristi, E. Synlett 2006, 2699–2715. (h) Vicario, J. L.; Badia, D.; Carrillo, L.; Reyes, E.; Etxebarria, J. Curr. Org. Chem. 2005, 9, 219–235.

^{(3) (}a) Bioorganic and Medicinal Chemistry of Fluorine; Begue, J.-P., Bonnet-Delpon, D., Eds.; Wiley: Hoboken, NJ, 2008. (b) Fluorine In Medicinal Chemistry And Chemical Biology; Ojima, I., Ed.; Wiley-Blackwell: 2009. (c) Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications; Kirsch, P., Ed.; Wiley-VCH: Weinheim, 2004. (d) Organofluorine chemistry; Uneyama, K., Ed.; Blackwell Publishing: Oxford, 2006. (e) Fluorine-Containing Synthons; Soloshonok, V. A., Ed.; American Chemical Society: Washington, DC, 2005. (f) Ma, J.-A.; Cahard, D. J. Fluorine Chem. 2007, 128, 975–996. (g) Ma, J.-A.; Cahard, D. Chem. Rev. 2004, 104, 6119–6146. (h) Ma, J.-A.; Cahard, D. Chem. Rev. 2008, 108, PR1–PR43. (i) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011, 111, 455–529.

^{(4) (}a) Bravo, P.; Crucianelli, M.; Ono, T.; Zanda, M. J. Fluorine Chem. **1999**, 97, 27–49. (b) Kuznetsova, L. V.; Pepe, A.; Ungureanu, I. M.; Pera, P.; Bernacki, R. J.; Ojima, I. J. Fluorine Chem. **2008**, 129, 817–828. (c) Binkert, C.; Frigerio, M.; Jones, A.; Meyer, S.; Pesenti, C.; Prade, L.; Viani, F.; Zanda, M. ChemBioChem **2006**, 7, 181–186. (d) Pesenti, C.; Arnone, A.; Bellosta, S.; Bravo, P.; Canavesi, M.; Corradi, E.; Frigerio, M.; Meille, S. V.; Monetti, M.; Panzeri, W.; Viani, F.; Venturini, R.; Zanda, M. Tetrahedron **2001**, 57, 6511–6522. (e) Molteni, M.; Pesenti, C.; Sani, M.; Volonterio, A.; Zanda, M. J. Fluorine Chem. **2004**, 125, 1735–1743. (f) Philippe, C.; Milcent, T.; Nguyen, T. N. T.; Crousse, B.; Bonnet-Delpon, D. Eur. J. Org. Chem. **2009**, 30, 5215–5223.

 β -trifluoromethyl β -amino alcohols, we decided to investigate the addition reactions of organometallic species to a chiral 2-trifluoromethyl-2-hydroxymethyl-1,3-oxazolidine. The addition of organometallics to unfunctionalized chiral trifluoromethyloxazolidines (Fox) has been reported to provide a convenient access to chiral α -trifluoromethylamines.^{7–12} However the stereoselectivity of the organolithium reagent addition to (*R*)-phenylglycinol based fluorinated oxazolidines was reported to proceed with retention of configuration.⁸ As a consequence, this strategy requires a tedious separation of the starting oxazolidine diastereomers before the reaction with the organometallics (Scheme 1). Other procedures involve the stereoselective addition of organolithium reagents on a hydroxylated imine which is difficult to isolate or on silylated imine intermediates (Scheme 1).⁸

Scheme 1. Stereoselective Synthesis of Chiral Trifluoromethylated Amines from Trifluoromethylated Oxazolidines and Imines

(5) (a) Marti, R. E.; Heinzer, J.; Seebach, D. Liebigs Annalen 1995, 1193–215. (b) Sakai, T.; Yan, F.; Kashino, S.; Uneyama, K. Tetrahedron 1996, 52, 233–244. (c) Uneyama, K.; Hao, J.; Amii, H. Tetrahedron Lett. 1998, 39, 4079–4082. (d) Abouabdellah, A.; Begue, J.-P.; Bonnet-Delpon, D.; Nga, T. T. J. Org. Chem. 1997, 62, 8826–8833. (e) Arnone, A.; Bravo, P.; Capelli, S.; Fronza, G.; Meille, S. V.; Zanda, M.; Cavicchio, G.; Crucianelli, M. J. Org. Chem. 1996, 61, 3375–3387. (f) Volonterio, A.; Bravo, P.; Stefano, S. C.; Meille, S. V.; Zanda, M. Tetrahedron Lett. 1997, 38, 1847–1850. (g) Bravo, P.; Farina, A.; Kukhar, V. P.; Markovsky, A. L.; Meille, S. V.; Soloshonok, V. A.; Sorochinsky, A. E.; Viani, F.; Zanda, M.; Zappala, C. J. Org. Chem. 1997, 62, 3424–3425. (h) Volonterio, A.; Vergani, B.; Crucianelli, M.; Zanda, M.; Bravo, P. J. Org. Chem. 1998, 63, 7236–7243. (i) Bravo, P.; Guidetti, M.; Viani, F.; Zanda, M.; Markovsky, A. L.; Sorochinsky, A. E.; Soloshonok, I. V.; Soloshonok, V. A. Tetrahedron 1998, 54, 12789–12806. (j) Pesenti, C.; Arnone, A.; Aubertin, A. M.; Bravo, P.; Frigerio, M.; Panzeri, W.; Schmidt, S.; Viani, F.; Zanda, M. Tetrahedron Lett. 2000, 41, 7239–7243. (k) Pytkowicz, J.; Stephany, O.; Marinkovic, S.; Inagaki, S.; Brigaud, T. Org. Biomol. Chem. 2010, 8, 4540–4542.

We recently reported that the LAH reduction of (R)-phenylglycinol and ethyl trifluoropyruvate based oxazolidines provided a straightforward access to enantiopure (S)- and (R)-trifluoroalaninols (Scheme 2).^{5k}

Scheme 2. LAH Reduction of Chiral Ethyl Trifluoropyruvate-Based CF₃-Oxazolidines Leading to Enantiopure (*S*)- and (*R*)-Trifluoroalaninols^{*a*}

In order to extend this approach to the synthesis of chiral β -trifluoromethyl β -amino alcohols quaternarized at the β -position, we report herein the stereoselective addition of various organolithium compounds to fluorinated 2-hydroxymethyl oxazolidines **2**. The oxazolidines **2** were conveniently obtained as a 71:29 diastereomeric mixture through the chemoselective NaBH₄ reduction of the trifluoropyruvate-based oxazolidines **1** (Scheme 3).¹³ Each diastereomer of oxazolidines **2** could be easily isolated by silica gel chromatography¹⁴ or by precipitation of the major diastereomer in pentane.

Scheme 3. NaBH₄ Reduction of the Chiral Ethyl Trifluoropyruvate-Based CF_3 -Oxazolidine 1^a

^{*a*} See ref 13.

(6) (a) Huguenot, F.; Brigaud, T. J. Org. Chem. 2006, 71, 7075–7078.
(b) Chaume, G.; Van Severen, M.-C.; Marinkovic, S.; Brigaud, T. Org. Lett. 2006, 8, 6123–6126. (c) Grellepois, F.; Nonnenmacher, J.; Lachaud, F.; Portella, C. Org. Biomol. Chem 2011, 9, 1160–1168.

(7) Ishii, A.; Higashiyama, K.; Mikami, K. *Synlett* **1997**, 1381–1382.
(8) Ishii, A.; Miyamoto, F.; Higashiyama, K.; Mikami, K. *Tetrahedron Lett*. **1998**, *39*, 1199–1202.

(9) Gosselin, F.; Roy, A.; O'Shea, P. D.; Chen, C.-y.; Volante, R. P. Org. Lett. 2004, 6, 641–644.

(10) Black, W. C.; Bayly, C. I.; Davis, D. E.; Desmarais, S.; Falgueyret, J.-P.; Leger, S.; Li, C. S.; Masse, F.; McKay, D. J.; Palmer, J. T.; Percival, M. D.; Robichaud, J.; Tsoub, N.; Zambonia, R. *Bioorg. Med. Chem. Lett.* **2005**, 154741–4744.

 Table 1. Diastereoselective Organolithium Reagents Addition

 to 2-Hydroxymethyloxazolidines 2

entry	oxazolidine	R	$de (\%)^a$	product	yield $(\%)^b$
1	2 _{maj}	Me	>98	(R) -3	93
2	2_{\min}	Me	90	(R)- 3	80
3	2^c	Me	>98	(R) -3	74
4	2_{maj}	<i>n</i> Bu	>98	(R)- 4	77
5^d	2_{maj}	Ph	>98	(R)- 5	67
6 ^e	2_{maj}	≡-TMS	>98	(R)- 6	59
7^e	2_{\min}	≡-TMS	>98	(R)- 6	77
8	2 _{maj}	<i>i</i> Bu	82	(R)- 7	66
9	2_{min}	iBu	66	(<i>R</i>)-7	73
10	2^{c}	<i>i</i> Bu	76	(<i>R</i>)-7	66
11	2 ^f	CH ₂ SPh	76	(R)- 8	54

^{*a*} Measured by ¹H and ¹⁹F NMR spectroscopy analysis of the crude reaction mixture. >98% means that one single diastereomer was detected. ^{*b*} Yields of pure isolated compounds. ^{*c*} 71:29 mixture of $2_{maj}/2_{min}$. ^{*d*} Reaction performed at -40 °C. ^{*e*} Reaction performed at -20 °C. ^{*f*} 88:12 mixture of $2_{maj}/2_{min}$

The major diastereomer 2_{mai} was treated with an excess amount of methyllithium (4 equiv) at -78 °C in THF to give the amino diol (R)-3 in 93% yield with complete diastereoselectivity (Table 1, entry 1). Intriguingly the addition of methyllithium to the minor diastereomer 2_{min} gave the same amino diol (R)-3 in 80% yield and 90% de (Table 1, entry 2). These results strongly contrast with the organolithium reagent additions on diastereomerically pure (S) or (R) non-hydroxylated oxazolines giving different diastereoisomers (Scheme 1).⁸ This result suggests that the same transition state should be involved in the methyllithium addition reaction on both oxazolidines diastereomers 2_{mai} and 2_{min} . This was confirmed by the fact that the addition of methyllithium to a 71:29 diastereomeric mixture of oxazolidines 2 also gave the unique (R)-3 diastereomer with an excellent diastereoselectivity (Table 1, entry 3). The addition of *n*-butyllithium and phenyllithium to 2_{mai} occurred also with complete diastereoselectivity (>98% de) to give (R)-4 and (R)-5 in 77% and 67% yields respectively (Table 1, entries 4 and 5). The addition of lithium trimethylsilyl acetylide to isolated oxazolidines 2_{mai} and 2_{\min} was also completely diastereoselective (>98% de) giving the same (R)-6 aminodiol in 59% and 77% yields respectively (Table 1, entries 6 and 7). The addition of *iso*-butyllithium and phenylthiomethyllithium to 2_{maj} and 2_{min} proceeded with lower diastereoselectivity (66% to 82% *de*) although the yields of diastereomerically pure compounds were acceptable after silica gel purification (54% to 73%) (Table 1, entries 8–11). As a preliminary study, the addition of a Grignard reagent (EtMgBr) was investigated but the expected addition product was obtained in a low yield (28%) and an average diastereoselectivity (74% *de*).

In order to obtain the enantiopure targeted amino alcohols, the phenylethanol side chains of (R)-3, (R)-4, and (R)-5 were cleanly removed by hydrogenolysis. The enantiopure fluorinated amino alcohol hydrochlorides (R)-9, (R)-10, and (R)-11 were then obtained in 94%, 89%, and 99% yields respectively (Scheme 4).

Scheme 5. Structure Correlation for the Assignment of (*R*)-**3** Absolute Configuration

The (*R*) configuration of the amino alcohols obtained was assigned by structure correlation with known compounds. We previously reported that the enantiopure (*R*)-trifluoromethylalanine was efficiently obtained in a few steps from the (*R*)-amino nitrile (*R*)-**12** (Scheme 5).^{6a} Thus the amino nitrile (*R*)-**12** and its corresponding diamino alcohol (*R*)-**13** were resynthesized according to our reported procedure^{6a} and (*R*)-**13** was converted into the

⁽¹¹⁾ Legros, J.; Meyer, F.; Coliboeuf, M.; Crousse, B.; Bonnet-Delpon, D.; Begue, J.-P. J. Org. Chem. 2003, 68, 6444–6446.

⁽¹²⁾ Harper, S.; Ferrara, M.; Crescenzi, B.; Pompei, M.; Palumbi, M. C.; Di Muzio, J. M.; Donghi, M.; Fiore, F.; Koch, U.; Liverton, N. J.; Pesci, S.; Petrocchi, A.; Rowley, M.; Summa, V.; Gardelli, C. J. Med. Chem. **2009**, *52*, 4820–4837.

⁽¹³⁾ Simon, J.; Nguyen, T. T.; Chelain, E.; Lensen, N.; Pytkowicz, J.; Chaume, G.; Brigaud, T. *Tetrahedron: Asymmetry* **2011**, *22*, 309–314.

⁽¹⁴⁾ Although each diastereomer was obtained in enantiopure form, their configurations at the C-2 could not be assigned.

Figure 1. Postulated transition state: *si*-face attack of a chelated *Z* metallo-imine.

corresponding diastereomerically pure amino diol (R)-3 through a diazotization reaction (Scheme 5). The optical rotation and the spectral data of this compound perfectly matched the compound (R)-3 synthesized in this work (Table 1, entry 1). Because of similar postulated reaction mechanisms the configurations of compounds 4 to 8 were also anticipated to be (R).

In order to explain these results we suggest that the reaction proceeds through the same Z-metallo-imine re-

sulting from the organometallic mediated ring opening of the hydroxymethyloxazolidines 2_{maj} and 2_{min} . To rationalize the diastereoselectivity of this reaction we propose a transition state inspired by both Iwao's model¹⁵ based on the *N*,*O* (phenylglycinol) metal chelation and Spero's model¹⁶ involving a *N*,*O* (oxymethyl) chelation. The *N*, *O*,*O*-tridentate chelation model we propose is consistent with an *si*-face attack of the chelated *Z* metallo-imine by a dimeric organolithium compound (Figure 1).

In summary, the organolithium species addition on chiral hydroxymethyl trifluoromethyl oxazolidines is highly diastereoselective. This provides a convenient and straightforward access to enantiopure β -trifluoromethyl β -amino alcohols quaternarized at the β -position.

Acknowledgment. We thank the Central Glass Company for financial support and the gift of ethyl trifluoropyruvate.

Supporting Information Available. Complete experimental procedures, and characterization data for all compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽¹⁵⁾ Fukuda, T.; Takehara, A.; Haniu, N.; Iwao, M. *Tetrahedron: Asymmetry* **2000**, *11*, 4083–4091.

⁽¹⁶⁾ Steinig, A. G.; Spero, D. M. J. Org. Chem. 1999, 64, 2406-2410.