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ABSTRACT

The organolithium species addition to 2-hydroxymethyl fluorinated oxazolidines (Fox) provides a highly diastereoselective and straightforward
route for the synthesis of enantiopure trifluoromethyl β-amino alcohols quaternarized at the β-position.

Enantiopure β-amino alcohols are very interesting com-
pounds for biological use1 and for the design of chiral
ligands or auxiliaries.2 Because of the great impact of the
incorporation of a trifluoromethyl group on the chemical

and thebiological properties ofmolecules,3β-trifluoromethyl
β-amino alcohols are very attractive compounds mainly as
biologicallyactive compoundssuchaspeptidomimeticunits.4

Although several methodologies have been reported for the
asymmetric synthesis of β-trifluoromethyl β-amino alcohols
monosubstituted in the β-position,5 to our knowledge very
few reports exist on the synthesis of their analogues quater-
narized at the β-position.6 The limitations of these methods
are their low diastereoselectivity6a,b or the numerous steps
required to obtain the enantiopure target compound.6c

In order to provide a straight forward and highly
stereoselective access to these challenging quaternarized
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β-trifluoromethylβ-amino alcohols,we decided to investigate
the addition reactions of organometallic species to a chiral
2-trifluoromethyl-2-hydroxymethyl-1,3-oxazolidine. The ad-
dition of organometallics to unfunctionalized chiral trifluoro-
methyloxazolidines (Fox) has been reported to provide
a convenient access to chiral R-trifluoromethylamines.7�12

However the stereoselectivity of the organolithium reagent
addition to (R)-phenylglycinol based fluorinatedoxazolidines
was reported toproceedwith retentionof configuration.8Asa
consequence, this strategy requires a tedious separation of the
starting oxazolidine diastereomers before the reaction with
the organometallics (Scheme1).Other procedures involve the
stereoselective addition of organolithium reagents on a hy-
droxylated imine which is difficult to isolate or on silylated
imine intermediates (Scheme 1).8,9

We recently reported that the LAH reduction of
(R)-phenylglycinol and ethyl trifluoropyruvate based oxazo-
lidines provided a straightforward access to enantiopure
(S)- and (R)-trifluoroalaninols (Scheme 2).5k

In order to extend this approach to the synthesis of
chiral β-trifluoromethyl β-amino alcohols quaternarized at
the β-position, we report herein the stereoselective addition
of various organolithium compounds to fluorinated
2-hydroxymethyl oxazolidines 2. The oxazolidines 2 were
conveniently obtained as a 71:29 diastereomeric mixture
through the chemoselective NaBH4 reduction of the tri-
fluoropyruvate-based oxazolidine 1 (Scheme 3).13 Each
diastereomer of oxazolidines 2 could be easily isolated by
silica gel chromatography14 or by precipitation of themajor
diastereomer in pentane.

Scheme 1. Stereoselective Synthesis of Chiral Trifluoromethylated
Amines from Trifluoromethylated Oxazolidines and Imines

a See ref 8. bSee ref 9.

Scheme 2. LAH Reduction of Chiral Ethyl Trifluoropyruvate-
Based CF3-Oxazolidines Leading to Enantiopure (S)- and
(R)-Trifluoroalaninolsa

a See ref 5k.

Scheme 3. NaBH4Reduction of the Chiral Ethyl Trifluoropyru-
vate-Based CF3-Oxazolidine 1a

a See ref 13.
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The major diastereomer 2maj was treated with an excess
amount of methyllithium (4 equiv) at �78 �C in THF to
give the amino diol (R)-3 in 93% yield with complete
diastereoselectivity (Table 1, entry 1). Intriguingly the
addition of methyllithium to the minor diastereomer 2min

gave the same amino diol (R)-3 in 80% yield and 90% de
(Table 1, entry 2). These results strongly contrast with the
organolithium reagent additions on diastereomerically
pure (S) or (R) non-hydroxylated oxazolines giving differ-
ent diastereoisomers (Scheme 1).8 This result suggests that
the same transition state should be involved in the methyl-
lithium addition reaction on both oxazolidines diastereo-
mers 2maj and 2min. This was confirmed by the fact that the
addition ofmethyllithium to a 71:29 diastereomericmixture
of oxazolidines 2 also gave the unique (R)-3 diastereomer
with an excellent diastereoselectivity (Table 1, entry 3).
The addition of n-butyllithium and phenyllithium to
2maj occurred also with complete diastereoselectivity
(>98% de) to give (R)-4 and (R)-5 in 77% and 67% yields
respectively (Table 1, entries 4 and 5). The addition of
lithium trimethylsilyl acetylide to isolatedoxazolidines2maj

and 2minwas also completely diastereoselective (>98% de)
giving the same (R)-6 aminodiol in 59% and 77% yields
respectively (Table 1, entries 6 and 7). The addition of

iso-butyllithium and phenylthiomethyllithium to 2maj and
2min proceededwith lower diastereoselectivity (66% to 82%
de) although the yields of diastereomerically pure com-
pounds were acceptable after silica gel purification (54%
to 73%) (Table 1, entries 8�11). As a preliminary study, the
addition of a Grignard reagent (EtMgBr) was investigated
but the expected addition product was obtained in a low
yield (28%) and an average diastereoselectivity (74% de).

In order to obtain the enantiopure targeted amino
alcohols, the phenylethanol side chains of (R)-3, (R)-4,
and (R)-5 were cleanly removed by hydrogenolysis. The
enantiopure fluorinated amino alcohol hydrochlorides
(R)-9, (R)-10, and (R)-11 were then obtained in 94%,
89%, and 99% yields respectively (Scheme 4).

The (R) configuration of the amino alcohols obtained
was assigned by structure correlation with known com-
pounds. We previously reported that the enantiopure
(R)-trifluoromethylalanine was efficiently obtained in a
few steps from the (R)-amino nitrile (R)-12 (Scheme 5).6a

Thus the amino nitrile (R)-12 and its corresponding dia-
mino alcohol (R)-13 were resynthesized according to our
reported procedure6a and (R)-13 was converted into the

Table 1. Diastereoselective Organolithium Reagents Addition
to 2-Hydroxymethyloxazolidines 2

aMeasured by 1H and 19F NMR spectroscopy analysis of the crude
reaction mixture. >98% means that one single diastereomer was de-
tected. bYields of pure isolated compounds. c 71:29 mixture of 2maj/2min.
dReaction performed at �40 �C. eReaction performed at �20 �C.
f 88:12 mixture of 2maj/2min

Scheme 4. Removal of the Phenylethanol Side Chain of (R)-3,
(R)-4, and (R)-5

Scheme 5. Structure Correlation for the Assignment of (R)-3
Absolute Configuration
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corresponding diastereomerically pure amino diol (R)-3
through a diazotization reaction (Scheme 5). The optical
rotation and the spectral data of this compound perfectly
matched the compound (R)-3 synthesized in this work
(Table 1, entry 1). Because of similar postulated reaction
mechanisms the configurations of compounds 4 to 8 were
also anticipated to be (R).
In order to explain these results we suggest that the

reaction proceeds through the same Z-metallo-imine re-

sulting from the organometallic mediated ring opening of

the hydroxymethyloxazolidines 2maj and 2min. To rational-

ize the diastereoselectivity of this reaction we propose a

transition state inspired by both Iwao’s model15 based on

the N,O (phenylglycinol) metal chelation and Spero’s

model16 involving a N,O (oxymethyl) chelation. The N,

O,O-tridentate chelation model we propose is consistent

with an si-face attack of the chelatedZmetallo-imine by a

dimeric organolithium compound (Figure 1).
In summary, the organolithium species addition on

chiral hydroxymethyl trifluoromethyl oxazolidines is highly
diastereoselective. This provides a convenient and straight-
forward access to enantiopure β-trifluoromethyl β-amino
alcohols quaternarized at the β-position.
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Figure 1. Postulated transition state: si-face attack of a chelated
Z metallo-imine.
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